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Abstract—Electrophoresis (EP) test separates protein com-
ponents based on their density. Patterns exhibited by this test
mostly show very close approximation, making it difficult to
examine test results within a short amount of time as it has
many variations of patterns and requires a significant amount
of knowledge to discern them accurately. To help clinical
examiners save time and produce consistent results, a new deep-
learning model optimized for EP graphic images was developed.
Extending recent work on capsule network, which is a state-
of-the-art deep learning model, this study was carried out to
develop a best-performing model in classifying abnormal and
normal electrophoresis patterns. Instead of extracting features
from the image, we used the whole slide image as an input
to the classifier. This study used 39,484 electrophoresis 2D
graph images and utilized capsule network as the foundation
of the deep learning architecture to learn the images without
data augmentation. The formulated models were compared
for a multitude of performance metrics including accuracy,
sensitivity, and specificity. Overall, the study results show
that our proposed architecture EP-CapsNet, which combines
capsule network with Google’s inception module, is the best
performing model, outperforming the baseline and alternative
models in almost all comparisons.
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I. INTRODUCTION

Electrophoresis is an inexpensive and widely used lab-
oratory technique to examine globulins or specific serum
proteins [1]. It is also used to identify serum protein dis-
orders based on the globulin composition. Based on the
composition of each serum, the clinical abnormality can be
detected, which can be a sign of various disorders such as
monoclonal gammopathy, oligoclonal band, and nephrotic
syndrome [1].

Electrophoresis may be defined as the separation of
charged particles under the influence of electric field [2].
Each fraction in the specimen can be separated by making
use of electrophoresis scanner where the electrical charge
that is applied causes fractions to move towards the re-
spective electrode, leaving density information. Then, the
density can be mapped into graphical data and numerical
value. In general, both the numerical and graphical data are

used by clinical practitioners to examine and conclude the
findings of electrophoresis. However, this work process is
very tedious and in need of many resources to do the whole
process. In between the sub-processes, there is also some
manual processes such as cutting the additional region of
the graphical image, which requires precision to have the
uniform size of the resulting image exacted. The process of
electrophoresis has various graph interpretations, requiring
a significant amount of knowledge to examine all kinds of
cases and minimize misconclusions [1]. The exploitation
of deep learning can contribute to minimizing the manual
processes, lessening the processing time, and reducing the
number of labors, allowing doctors to have a less cognitive
burden in analyzing the results and more time to re-examine
abnormal results to decide subsequent treatments.

Deep learning has been phenomenal these days due to
its compatibility for implementation in various fields. Many
researchers are adopting deep learning in various areas
including biomedical imaging. One of the well known deep
learning architectures for image processing is Convolutional
Neural Network (CNN). CNN can be implemented for image
processing in the medical field, which includes classification,
detection, and segmentation of pathological images. CNN
can detect features without any positional or orientation
information called ”translational invariance” as it can detect
the translated features, because of the pooling layer, which
is one of the essential ideas of CNN [3]. Translational
invariance could be achieved by using image augmentation
so the network can learn from a different point of views.
CNN also requires an enormous amount of data to train a
model for good prediction. However, in practice, it is often
not feasible to acquire a large data set, especially in the
bioinformatics field.

Sabour et al. [4] published a new deep learning archi-
tecture called Capsule Network (CapsNet). The architecture
introduced a new representative output called the pose
vector, which means the output of the layer is not scalar but
a vector, which encodes more positional and information
about a feature. Another critical point is that the pooling
layer is not employed in this architecture. The capability



of capsule network to achieve decent classification results
using the MNIST dataset without using pooling layer and
data augmentation gave more reasons to implement this
architecture.

There are only a limited number of studies about the
binary classification of electrophoresis. In particular, there
has not been any study that exploited the whole image
of electrophoresis, as opposed to cutting the image into
fractions, on deep learning. Also, no study has applied the
capsule network to electrophoresis. This study extends the
capsule network by exploring the possibility of combining
it with Google’s inception module [5]. The proposed model
is called EP-CapsNet, and it is being compared with state
of the art deep learning designs, the Inception-V3 [5] and
the original CapsNet [4] architectures.

This study tests the performance of EP-CapsNet archi-
tecture in the context of electrophoresis graphical data
classification. The EP-CapsNet was compared with the
original capsule network and the Inception-V3 architecture
in similar hyper-parameters settings. In addition to those
two image input models, a multilayer perceptron (MLP)
and two other popular machine learning techniques, support
vector machine (SVM) and random forest, were employed as
comparison conditions for the assessment of the performance
of the proposed architecture. The comparisons were made
by using multiple metrics - sensitivity, specificity, balanced
classification rate, and Matthew’s Correlation Coefficient
as well as accuracy, to examine their performances from
multiple perspectives.

II. METHODS

A. Capsule Network

Although CNN has been a robust method to achieve good
performance, the network has some deficiencies such as the
needs of data augmentation to recognize the same features
in different spatial locations and the loss of information as
it uses the pooling layer, which only returns one value as
the representative of the specified region. Different from
CNN, Capsule Network (CapsNet) utilizes a capsule as a
group of neurons, which learn and recognize the visual
entity as vector output while the vector length represents
the probability of the presence of the entity [4].

The structure of CapsNet consists of an input layer, a
convolution layer, a primary capsule, a routing capsule, and
a decoder layer. After the input layer, a convolution layer
with 9 x 9 kernel size, the stride of one, 256 filters, and
no padding parameters setting were used for the first layer.
Afterward, the input is taken into the primary capsule, which
contains a convolution layer of 9 x 9 kernel size, the stride of
two, 256 filters, and no padding settings. Therefore, the out-
put is reshaped into 32 filters, and each has eight dimensions,
thereby having a total of 32 x 8 x 6 x 6 = 1,152 capsules. At
the end of primary capsule layer, a squash function is used
for the activation of the output vector, producing an output

vector vj as shown in 1. Squash function ensures that the
length of the vector to be an estimated probability that has a
value between 0 and 1. The prediction vector later was used
in the routing-by-agreement mechanism, which sends the
output from the primary capsule to the appropriates routing
capsules of a higher-level entity. The iteration of routing
refines the agreement between two capsules. The final output
of the routing capsule is a squashed form of its output.

vj =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(1)

The output from the digit capsule was used to compute
the margin loss function, Lk. Lk in 2 is a sum of losses
of all digit capsule [4]. The equation is composed of m+
as the minimum probability of true prediction, m− as the
minimum probability of false prediction, lambda λ as the
hyper-parameter for this equation, and square hinged loss.

Lk = Tk max(0,m+−‖vk‖)2+λ(1−Tk)max(0, ‖vk‖−m−)2

(2)

B. EP-CapsNet

The primary objective of this research is to utilize Cap-
sNet and adjust the network for electrophoresis images
in order to achieve optimum performance. As mentioned
previously, the original CapsNet was trained on MNIST
dataset and attained state-of-the-art performance. Moreover,
it also overcame the limitation of CNN in classifying the
images based on detected features by replacing pooling
layer with routing-by-agreement and the scalar output of a
layer with vector output, which is called capsule. Hence, the
vital intuition behind using CapsNet as the base architecture
to build an architecture for electrophoresis is that it can
accommodate multiple proteins classification and observe
their relevance with each other by making use of capsules
instead of using general CNN.

Further, EP-CapsNet utilizes the inception layer to en-
hance the performance of the network. Hence, this study
incorporates the inception module into the capsule network
to improve the ability to learn features by making use of
filters of different sizes in a single layer. Inception modules
have been proven to enhance the network ability because
of the multiple learned features from various convolutions,
allowing effective multi-level feature extraction in different
dimensions in parallel [5]. The inception module, despite
the number of layers inside the module, is still efficient
because of the dimension reduction by 1 x 1 convolution
layer. For these reasons, the inception module was employed
to explore the possibility of improving network performance
for electrophoresis binary classification. Only one layer of
inception module was added in this experiment to see the
improvement, and it was added to the base CapsNet archi-
tecture. Incorporating the inception layer into the network
may seem to make some parameters of the network more



Figure 1: The process of generating electrophoresis image by clinical examiners, the preprocessing image, and the
classification to detect the abnormality of electrophoresis graph, which is done by EP-CapsNet, the proposed model.

Figure 2: The comparison of original CapsNet and EP-CapsNet where EP-CapsNet utilized inception module to enrich the
data input to primary capsule, which is improved the general performance classification result.

massive than the original architecture. However, the num-
ber of parameter of EP-CapsNet was proved smaller than
original CapsNet, 116,441,764 and 144,679,172, showing
the efficiency of the network. The addition of the inception
module compressed the network’s parameter. As a result, the
number was reduced in EP-CapsNet architecture.

The inception module is described in Figure 2. The output
from the previous layer will be an input to the inception
module. The first 1 x 1 convolutions simultaneously process
the input. The first 1 x 1 convolution output will send the
output to the 3 x 3 convolution layer, while the second
one will send the output to two 3 x 3 convolution layers.
Later, the output from third 1 x 1 convolution, one 3 x 3
convolution, and two 3 x 3 convolutions will be concatenated
as an output of the inception module.

EP-CapsNet had the input layer to receive the 53 x 53
input images. The second layer of the architecture is the 3 x
3 convolution layer with 256 filters, stride 1, and no padding
setting. This layer produced 51 x 51 x 256 outputs. The
next layer was the proposed inception layer. Different from
the original inception layer from Inception-V3 architecture,
the pooling layer was removed for this architecture as it
has the opposite work with the capsule based architecture.
The output of inception would have the same width and

height as the input, but a different number of filters as the
output was the concatenation of multiple layers. After the
inception layer, another convolution layer was used to extract
more features in broader dimensions, so 9 x 9 convolution
layer with 256 filters, no padding setting, and stride one
were applied. The next layer was the primary capsule. In
the primary capsule layer, another 9 x 9 with 256 filters was
used to extract smoother features. Instead of using stride
1, this layer incorporated stride 2 to reduce the dimensions
of the output. Subsequently, 256 filters from the input were
divided into 64 filters, where each capsule filter has four
filters, so the output of this layer is 28,224 capsules with
four filters. The primary capsule layer sends the output
to the upper capsule, which is called EP Capsule in this
architecture. The EP Capsules had 32 x 2 dimensions based
on the routing algorithm from the original CapsNet. This
layer would give the final class probability of the input.
Although the classification result can be achieved from the
EP Capsules layer, three fully connected layers are used
to reconstruct the input. The differences between input and
the reconstructed image were used as the regulation of the
loss function in Equation 2. This regulation is significantly
essential to keep the model from over-fitting.



Table I: Electrophoresis data statistics.

Dataset Data Type Normal Abnormal

00307 CK isoenzyme serum 2,602 (68%) 1,203 (32%)
00309 Protein EP serum 5,945 (30%) 13,886 (70%)
00312 LDH isoenzyme serum 704 (29%) 1,690 (71%)
00323 Protein EP random urine 4,722 (34%) 9,182 (66%)

III. EXPERIMENT

A. Dataset

This study used datasets provided by Seegene, a Medical
Foundation, which is a non-profit organization set up to
examine patients’ data for various disease symptoms. There
were four types of datasets, which are 00307, 00309, 00312,
and 00323. 00307 is a CK (Creatine Kinase) isoenzyme
serum data; 00309 is a serum protein electrophoresis data;
00312 is a graph data for LDH isoenzyme serum; Finally,
00323 is a random urine protein electrophoresis data. All
of the data were serum based patterns except the 00323
data, which is based on random urine. Each data consists of
albumin, alpha-1, alpha-2, beta, and gamma fractions except
for 00307 and 00312 datasets. The datasets are described in
Table I.

B. Data Preprocessing

This study used 60% of the data for training and the rest
for validation and testing. The data were divided by applying
the specified percentage to each of the classes. Collected
images have RGB colors with 670 x 296 dimensions for
all of the images. Instead of the RGB color system, the
images were converted into gray-scale images for reduced
complexity. For the deep-learning classifiers, the data were
further resized into 53 x 53 pixels and used for training,
validation, and testing. For vector input classifiers, the two
kinds of image sizes were used, the original (670 x 296)
and the resized ones. Every image was transformed into a
vector of numbers by extracting the average of every non-
white pixel in a specific y axis, which ranges from 0 to 1,
at each point of x.

C. Experiment Phrase

The proposed architecture was built using the Tensorflow
library and Python. It was run on NVIDIA GPU Tesla-V100-
SXM2 16GB. The experiment was run for approximately
two to three hours for each run and was run five times
to take into account the randomization in the network and
GPU. Several experiments were run for each of the four
datasets separately; 00307, 00309, 00312, and 00323. All of
the models used the same data for training, validation, and
testing. For all models, the data were divided into 3 distinct
groups of data, where each data only belongs to one group;
60% training data, 20% validation data, and 20% testing
data. Training data were used to build the model, where

validation data were used to validate the model performance.
At the end of the experiment, the performance of testing data
was run and the result was used in this paper.

For the original capsule network and the proposed archi-
tecture, EP-CapsNet, the hyper-parameters of the network
were set to 0.0001 learning rate, 64 batch size, two rout-
ing iterations, 100 epochs, m+=0.9, m−=0.1, λ=0.5, and
α=0.0005. Different from the original capsule network, this
study chose to lessen the over-fitting problem by reducing
the number of routing iterations. Adam optimizer [6] was
used as a back-propagation algorithm for the network, and
sigmoid function was used to calculate the final probability
for each candidate class. ReLU was used as the activation
function in the hidden layers.

Another baseline was state-of-the-art deep learning ar-
chitectures including Inception-V3 [5]. Inception-V3 was
used as a baseline model due to its popularity in the
biomedical imaging field and its compatibility in adopting
the architecture to a different dataset. For this study, the
Inception-V3 with transfer learning was used, allowing the
model to handle the weight from ImageNet training. The
number of epochs used for training was 50,000 epochs,
which was chosen based on its saturated point of training
electrophoresis image classification and ran for five times to
get an average result.

For comparison purposes, vector input models were also
employed. The vector input models were operationalized
by two popular machine learning techniques, SVM [7] and
random forest [8]. These models served as the baselines for
this experiment. For the SVM, C-support SVM was used
by the scikit-learn library, which was set with gamma 1.2
and 0 as a random seed. For the random forest model, it
used the Gini criterion to split the node on the tree, with the
depth of 20, and ten trees as the estimators. Also, the basic
neural network architecture, multilayer perceptron (MLP)
[9], was also used as a baseline. The MLP architecture had
three layers, which were 53 neurons of the input layer, 106
neurons of the hidden layer, and two neurons of the output
layer. This architecture used 0.0001 learning rate, Adam
optimizer, and 1,000 epochs for training the model.

IV. RESULT AND DISCUSSION

Accuracy, sensitivity, specificity, BCR, and MCC were
used to assess the performance of the classification mod-
els. Based on the accuracy measurement on Table II, the
proposed model achieved the highest accuracy out of all
the datasets, which showed the ability of the model to
correctly differentiate between normal and abnormal cases
even though the proportion for both classes were different.
Among the vector input models, random forest performed
the best with 670 lengths of vector and showed higher
accuracy than Inception-V3 in almost all datasets. The usage
of original size data rather than reduced data in machine



learning methods did not always lead to performance im-
provement. The original CapsNet demonstrated how well
it could work for electrophoresis data, and EP-CapsNet
exhibited the best and most improved accuracy performance.

Another measurement called BCR (Balanced Classifica-
tion Rate) was used to measure the performance of each
model by considering the balance between sensitivity (true
positive rate) and specificity (true negative rate). Different
from accuracy that tries to calculate the accurate prediction
result from all data in a dataset, BCR estimates the accurate
prediction based on each class of positive cases and negative
cases and takes the average of true positive rate and true
negative rate as the final accuracy rate. Out of all datasets,
the best BCR was achieved by EP-CapsNet, the proposed
model. However, the original CapsNet did not surpass the
BCR rate of the Inception-V3 in all datasets (Table II),
which is different from the accuracy measurement. It was
also the same as the input vector models, which produced
a lower BCR rate than Inception-V3. The result seems
to show how well Inception-V3 tries to make a balanced
classification between classes. The work of pooling layer in
the architecture tries to achieve higher generalization of the
result, indicating that the model can get the highest accuracy
if the data is balanced. However, the EP-CapsNet delivered
the highest BCR by improving the CapsNet architecture with
the inception module.

MCC (Matthews Correlation Coefficient) was also used as
the final measurement to measure the correlation between
the prediction and actual classes. Instead of giving the
percentage of accurate prediction, this measurement gives
the coefficient, that shows whether the model gives perfect
prediction (1), random prediction (0), or perfect incorrect
prediction (-1). As shown in Table II, EP-CapsNet still
showed the best performance out of all models in all
datasets, which demonstrated how the correlation of the
prediction and the actual class was closer to a perfect
classification than other models. Different from EP-CapsNet,
the original CapsNet achieved higher MCC score almost in
all datasets except for 00307 dataset, which had the smallest
data size and as a result lowered the learning ability of the
model. However, the MCC for CapsNet was still higher than
the other vector input models, demonstrating the richness of
the images in classifying the electrophoresis data.

Based on sensitivity (Table II), the results were different
from the overall performance. If the dataset has the highest
proportion of normal class, e.g., 00307 dataset, the sensi-
tivity scores were lower than other datasets for all models.
The worst sensitivity could be seen in the MLP model for
00307 dataset, which all vector input models performed
worse than the image input models, except for the original
CapsNet, which was lower than the random forest method.
However, the vector input models had similar or higher
sensitivity scores than Inception-V3. It demonstrated how
the models learned the training data as the datasets except

for 00307 have more abnormal than normal data. In the
end, EP-CapsNet showed an improved performance from
the original CapsNet, demonstrating the highest sensitivity
scores out of all datasets except for 00307, which had highest
sensitivity score on Inception-V3 model. As expected from
its data proportion, the 00307 dataset had overall higher
specificity scores in all models than other datasets (Table II).
The vector input classifiers had more severe performance
differences across the data types, showing their vulnerability
to the proportion of the data. In contrast, the image input
models (i.e., deep-learning based models) showed more
stable performance across the data types.

Overall, as shown in Table II, out of 20 repeated compar-
isons involving 4 different data types (i.e., 00307, 00309,
00312, 00323) and 5 different metrics (i.e., accuracy, BCR,
MCC, sensitivity, and specificity), EP-CapsNet showed the
best performance scores in all comparisons except three
(sensitivity-00307, specificity-00307, specificity-00323). For
accuracy, BCR, and MCC, EP-CapsNet was the best per-
forming model without exception.

V. CONCLUSION AND FUTURE RESEARCH

In this study, a novel architecture called EP-CapsNet,
which was an extension of CapsNet combined with the
inception module was proposed to enhance the classifi-
cation performance on graphical electrophoresis images.
EP-CapsNet extended the state-of-art capsule network and
adjusted it for electrophoresis image classification. Further-
more, the new architecture incorporated the inception mod-
ule into the network to capture various features in different
dimensions in parallel. The inception module was used to
obtain a combination of features from different convolutions
within a single layer before feeding them into the next
layer. The results of our study showed clearly superior
performances of the proposed model, relative to the original
capsule network as well as the original inception network.
Even with dimension reduction to 53 x 53 image size,
the proposed model still showed a competitive, and mostly
outperforming, results compared to the machine learning
methods coupled with the original image size (670 x 296).
In the future research, an ensemble method of different
models might be utilized to combine the strengths of those
alternative models. This approach will be particularly useful
when the ensemble model wants to develop a strategy in
combining the decisions of multiple models in a way that
either sensitivity or specificity alone can be maximized.
Also, As a follow-up of this experiment, the future research
should take into account the second work of Hinton in
2017, which is called ”Matrix Capsules with EM Routing”
[10] by utilizing the expectation and maximization routing.
Their study was a continuation of the first CapsNet paper,
which was published to improve the flaws of the prior
routing-by-agreement mechanism. Instead of using vector
representation, they used the matrix to represent the pose



Table II: Electrophoresis image classification based on accuracy, BCR, MCC, sensitivity, and specificity measurements.

Method Input 00307 00309 00312 00323

Accuracy
SVM 53-vector 80.65% 84.03% 80.88% 86.65%
SVM 670-vector 80.56% 85.04% 78.17% 87.23%
Random Forest 53-vector 83.99% 89.57% 77.32% 86.23%
Random Forest 670-vector 82.94% 90.39% 81.46% 87.58%
MLP 53-vector 82.17% 89.62% 80.78% 87.96%
MLP 670-vector 77.57% 87.59% 76.88% 86.58%
Inception-V3 53 x 53 image 81.00% 85.15% 79.02% 87.53%
CapsNet 53 x 53 image 85.28% 93.14% 88.53% 90.47%
EP-CapsNet 53 x 53 image 90.42% 95.87% 91.41% 93.60%

BCR
SVM 53-vector 64.56% 79.08% 70.58% 89.23%
SVM 670-vector 67.01% 80.64% 63.43% 87.68%
Random Forest 53-vector 76.84% 87.36% 63.59% 86.32%
Random Forest 670-vector 75.79% 86.65% 67.65% 87.68%
MLP 53-vector 70.92% 86.88% 73.68% 88.56%
MLP 670-vector 58.21% 83.46% 76.39% 89.02%
Inception-V3 53 x 53 image 80.71% 86.68% 77.86% 89.03%
CapsNet 53 x 53 image 75.92% 92.15% 81.76% 91.83%
EP-CapsNet 53 x 53 image 85.36% 94.51% 87.49% 93.37%

MCC
SVM 53-vector 0.421 0.556 0.424 0.717
SVM 670-vector 0.426 0.585 0.301 0.705
Random Forest 53-vector 0.562 0.712 0.292 0.681
Random Forest 670-vector 0.535 0.722 0.402 0.707
MLP 53-vector 0.487 0.710 0.461 0.722
MLP 670-vector 0.290 0.649 0.462 0.713
Inception-V3 53 x 53 image 0.594 0.687 0.542 0.749
CapsNet 53 x 53 image 0.588 0.809 0.654 0.783
EP-CapsNet 53 x 53 image 0.741 0.880 0.748 0.842

Sensitivity
SVM 53-vector 31.83% 87.85% 88.87% 83.68%
SVM 670-vector 39.45% 88.44% 89.60% 86.74%
Random Forest 53-vector 62.28% 91.28% 87.96% 86.24%
Random Forest 670-vector 61.25% 93.28% 92.15% 87.79%
MLP 53-vector 48.01% 91.75% 86.25% 87.29%
MLP 670-vector 18.77% 90.80% 77.26% 83.90%
Inception-V3 53 x 53 image 79.84% 82.95% 81.21% 84.30%
CapsNet 53 x 53 image 56.64% 93.90% 93.73% 88.97%
EP-CapsNet 53 x 53 image 74.93% 96.92% 94.41% 93.84%

Specificity
SVM 53-vector 97.29% 70.31% 52.29% 94.96%
SVM 670-vector 94.58% 72.84% 37.25% 86.39%
Random Forest 53-vector 91.39% 83.44% 39.22% 86.39%
Random Forest 670-vector 90.33% 80.02% 43.13% 87.00%
MLP 53-vector 93.83% 82.02% 60.84% 89.83%
MLP 670-vector 97.66% 76.11% 75.52% 94.14%
Inception-V3 53 x 53 image 81.58% 90.42% 74.52% 93.75%
CapsNet 53 x 53 image 95.20% 90.39% 69.78% 94.69%
EP-CapsNet 53 x 53 image 95.79% 92.09% 80.58% 92.90%

of the feature. Multi-class classification of EP can also be
reconsidered as the continuation of this work. Notwithstand-
ing these future improvements possible, the current study
shows that the proposed EP-CapsNet is a promising choice
for electrophoresis image classification.
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