
AppTrends: A Graph-based Mobile App 

Recommendation System Using Usage History 

Donghwan Bae, Keejun Han, Juneyoung Park, Mun. Y. Yi 

Department of Knowledge Service Engineering 

Korea Advanced Institute of Science and Technology 

Daejeon, Republic of Korea 

Email: {bdhwan, keejun.han, j.park89, munyi}@kaist.ac.kr 

 

 
Abstract—With the advent of smartphones, mobile phones 

have evolved from a simple communication tool to a multi-

purpose device that affects every aspect of our daily life. The 

expansion of the mobile application market has made it difficult 

for smartphone users to find applications that fit their needs. 

Most prior research on application recommendation provides a 

limited solution to the problem of application overload. These 

recommendation techniques, developed outside of the mobile 

environment, have a number of limitations such as cold start 

problem and domain disparity. In this paper, we propose 

AppTrends, which incorporates a graph-based technique for 

application recommendation in the Android OS environment. 

Our experiment results obtained from the field usage record of 

over 4 million applications clearly show that the proposed graph-

based recommendation model is more accurate than the Slope 

One Model. 

Keywords— Mobile application recommendation; Pathfinder 

network algorithm; Usage graph; Smartphone 

I. INTRODUCTION 

The rapid emergence of smartphones has inevitably formed 
a new online market for mobile application. According to a 
recent study, at least 10 billion people use smartphones in their 
daily life for various purposes varying from a simple phone 
call to delicate activities such as document editing [1]. Among 
those various purposes, approximately 66% of the users mainly 
use their smartphone to experience new mobile applications, 
closely followed by Internet surfing [2]. This statistic tells us 
that the mobile application plays a vital role in people’s daily 
activities.  

The mobile application can be easily installed from an 
application market such as Apple’s App Store and Google’s 
Android Market. The simple process of accessing the market 
for both providers and downloaders have allowed the Android 
market to grow and to register 0.7 million applications and is 
continously increasing. [3].  

Whether the user has installed an application, however, is a 
vague indicator of whether the user actually likes the 
application. In accordance with the recent survey [3], nearly 3 
out of 10 applications are instantly deleted after installation. 
This finding implies that finding the exact application one 
requires can be a difficult process. This difficulty also poses 
harm to the developers, as they lose the chance to promote 
their applications to the users because of the enormous number 
of applications that already exists in the market. Another 

survey [4] presents that the top 50 applications reach almost 60% 
of total download number; and the rest 0.69 million 
applications are fighting for the rest 40%, indicating that most 
of the applications fail to even be discovered by the users. The 
nature of the market creates a definite need for a 
recommendation technique specialized for mobile applications.  

One of the most reliable recommendation technique for 
mobile applications is based on Collaborative Filtering (CF) 
method. Collaborative Filtering generates recommendations 
primarily using users’ ratings. Although it is widely adapted 
and promises a reliable performance, it suffers from cold start 
problem, which is a critical issue when the user-generated data 
is insufficient. Especially, in recommending mobile 
applications, a cold start happens more frequently as the life 
span of the mobile application is very short for sufficient 
collection of rating data from the user [5].  

 

 

 

 

 

 

 

 

To counteract the application overload problem, in this 
paper we present AppTrends, a recommendation system for 
mobile applications. The novel feature of AppTrends is that it 
generates a graph from a user’s app usage history. In the 
application-based graph, the nodes are the applications used by 
the user and those nodes are connected if they are used 
simultaneously in a certain session. The simultaneous use of 
application implies that those two connected applications have 
a high chance of being co-used to complete a sequential task. 
For instance, Figure 1 shows the applications used to upload a 
photo to a social network service. The process requires a 
camera application to take the photo, which is then edited 
through a photo editing application and shared via a social 
network application. Although a different combination of 
applications can be chosen to complete an identical task, it 
sounds plausible to consider those applications are co-related 

 
Figure 1 A sequential list of the applications for a 

specific task (i.e., uploading a photo to SNS and finding 

a restaurant nearby) 



once they are used together. A newly-generated graph, using 
the co-related applications, is then used to make a personalized 
recommendation for mobile applications. Unlike the other 
existing solutions, AppTrends is completely automatic and is 
flexible to deal with the cold start problem. To the best of our 
knowledge, AppTrends is the first mobile application that 
generates a graph-based recommendation for mobile 
applications.  

 The major contributions of this paper are as follows:  

 We propose a novel recommendation technique for 
mobile applications, which is based on co-occurrence 
of mobile applications activated in sequence. We then 
compare our model with the CF method, a 
fundamental model of a current state-of-the-art 
commercial model, The results of our experiment 
show that AppTrends outperforms the baseline model.  

 We collect a real usage data from users for our 
experiment in order to validate whether AppTrends 
delivers a practically meaningful results for the 
recommendation of the mobile application. To do so, 
we have implemented the mobile prototype of 
AppTrends and collected real usage data during two 
weeks from 206 users.  

The remainder of this paper is structured as follows: In 
section  II, we review the existing techniques used in mobile 
application recommendation. In section III, we propose our 
graph-based recommendation system, called AppTrends. In 
section IV, we demonstrate the effectiveness of our system 
through an experiment and present the results. In section V, we 
conclude our paper.  

II. BACKGROUND AND RELATED WORK 

In this section, we discuss some of the conventional 
recommendation techniques that are available for mobile 
application and introduce some of the real mobile services that 
are similar to our system.  

A. Recommender Systems in E-commerce  

A general strategy for item recommendation in E-
commerce is to discover potential items that are liked by 
specific users. There are mainly four types of recommendation 
strategies: Non-personalized, Attribute-based, Item-to-Item 
Correlation, and People-to-People Correlation.  

First, Non-personalized recommendation technique focuses 
on discovering items that have relatively higher rating scores, 
mainly targeting to satisfy most users. In other words, this 
technique does not regard each user’s interest, but rather 
recommends the same items that are sold most with high rating 
scores to all users [5]. Second, Attribute-based 
recommendation technique returns categorized items by 
analyzing user’s specific attributes. Those attribute can be 
collected manually from user input or automatically collected 
from exploiting user’s usage data. A service based on this 
technique is Movie Map [6], which recommends movies from 
a category where a user is interested in. Third, Item-to-item 
correlation is to recommend items that are not seen by a user, 
but similar to items that the user has purchased. With the 
purchasing history of the user, this technique can be built in an 

automatic way. Amazon [7] is one of the most popular online 
shopping services that adopts this technique for their item 
recommendation. Lastly, People-to-People recommendation 
measures how similar a user is to other users and recommends 
items that are liked by the users who are similar to the user. 
The commercial services based on this technique are Netflix [5] 
and Musicstrands [9] that recommends songs with regards to 
various features of the song such as genre, album, and singer.  

B. Recommender Systems for Mobile Application 

Recommender systems are not only used in the E-
commerce market environment, but also in the mobile 
environment to recommend potentially favorable mobile 
applications for smart phone users. Upon the analysis for 
commercial mobile application recommender systems, we 
classify them into following two categories: Social-aspect 
recommender system and context aware recommender system.  

Social-aspect recommender system is a technique that 
discovers new items by sharing user information with others. 
One of the mobile application recommender systems, 
AppAware [10], records installation, update, deletion of mobile 
applications and share those records with others, in order to 
make a recommendation. This system is built upon the 
assumption that word-of-mouth is the most effective way to 
expand the influence of mobile application [11]. However, the 
limitation of this system is that it suffers from the cold start 
problem for new users as they have not created enough number 
of user data to be analyzed for recommendation. Furthermore, 
finding similar groups of users is not an easy task without 
acquiring a large amount of rating scores for mobile 
applications. Unlike other items in E-commerce, mobile 
application market is still an emerging market, meaning that 
most of mobile application misses the votes and ratings by 
users. With those data missing, the recommendation would fail 
to satisfy the user's needs. However, our system, AppTrends, 
uses the user’s own application usage data, so it would 
alleviate the problem caused from data sparseness .  

On the other hand, context aware recommender systems 
attempt to understand user’s current situation and reflect those 
information into recommendation. The possible components of 
the context can be time, location, activity, weather, emotional 
status, and social status [12]. Understanding those contexts 
enables the recommender systems to be more adaptable 
depending on user contexts.  For instance, a user currently on a 
bus going for a train station is highly likely to be interested in a 
mobile application that notifies her subway schedule. Appazzar 
[13] recommends mobile applications by considering the user’s 
current physical location. AppAware [14] is also a location-
based recommendation because it provides the information of 
mobile application download done nearby to the user’s current 
location. Inspired by AppAware, Applause [15] was further 
developed to overcome the cold start problem by asking their 
favorable places from newbies so as to recommend mobile 
application downloaded within those places.  

Although the above naive approaches of understanding 
user’s context are promising, it is yet unsatisfactory to 
understand what the user is currently doing. User’s current 
activity can be instantly associated with the user’s current 
interest, implying that those contextual information can be 



exploited to improve the performance of the recommender 
systems. Unlike the recommender systems above, our proposed 
recommender system, AppTrends, employs a novel approach 
that focuses on co-occurrence of mobile applications while 
conducting a sequential task. By doing so, AppTrends is 
expected to provide more adaptable recommendation results 
for each user by capturing the user’s current interest (i.e., 
taking a photo, finding a route) from the co-occurrence 
information.   

III. OUR PROPOSED SYSTEM 

In this section, we first introduce an automated method for 
generating a mobile-application based graph from their co-
occurrence information, then moving on to explain how to 
implement our system, AppTrends.  

A. Algorithm for AppTrends  

 The algorithm for AppTrends largely consists of two steps: 
Mobile application-based graph creation and Fit-score 
calculation. In the subsequent sections, we explain each step in 
detail and how each step generates the final recommendation 
result for mobile application.  

1) Mobile Application-based Graph Creation:  
The proposed approach that automatically generates mobile 

application-based graph from a user’s application usage data 
requires two specific information of the soruce: A set of 
applications and co-occurrence scores of the applications. 
These pieces of information are then processed with a number 
of refining steps to remove weak connections for noise 
deduction by calculating the shortest distance between the 
applications. 

As a first step, the mobile application list of a user are 
created from the user’s mobile application usage history. To 
caputre the applications, AppTrends records a list of the mobile 
applications of the user. Once the user downloads an 
application, the application is registered to AppTrends. 

The co-occurrence between the applications are measured 
during a session. A session begins when the user turns on the 
mobile phone and terminates when the screen goes off. The 
applications used within this session is considered to have a co-
occurrence relations. For instance, if a user wants to take a 
photo and share it with her friend, the user turns on her mobile, 
indicating that a new session begins. Then she takes a photo by 
turning on the camera application. After editing the photo, she 
sends the photo to her friends by using a messenger application. 
Lastly, she turns off the application, at which the session ends. 
Within this session, the user used camera, performed photo 
editing and used messenger application, in sequence, to 
complete a specific task. 

As these applications are used to achieve the same purpose, 
we can define that these applications are in a co-occurrence 
relation. As such cases happen more frequently, the distance 
between two applications in the graph becomes shorter. The 
session co-occurrence, denoted as SC, between two application 
Ai and Aj in the user u , can be formally defined as follows:  

𝑆𝐶(𝐴𝑖, 𝐴𝑗) = ∑𝑛(

𝑛

𝑘=1

𝐴𝑖 ∩ 𝐴𝑗) (1) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐(𝐴𝑖 , 𝐴𝑗) =
𝑆𝐶(𝐴𝑖 , 𝐴𝑗)

max(𝑆𝐶)
 (2) 

where n is the number of sessions, n(Ai ∩ Aj) is the number of 

session co-occurrence of two application Ai and Aj, max(SC) 
indicates the maximum SC between any applications for the 
user u, for normalization. As two applications more often occur 
in the same session, the distance between the applications need 
to be closer, thus, defining the distance between Ai and Aj can 

be obtained as follows: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑖 , 𝐴𝑗) = 1 −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐(𝐴𝑖 , 𝐴𝑗) (3) 

Lastly, to reduce the noise between applications, we used 
Pathfinder network pruning [16] that calculates the minimum 
distance between nodes. The underlying priciple for calculating 
minimum distance between two nodes Na and Ne  is Triangle 
Inequality [17]. Figure 2 shows the example of calculting the 
minimun distance between Na and Ne. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, the edge  𝑤𝑎𝑒  connecting 𝑁𝑎  and 𝑁𝑒  is only 

drawn as follows: 

𝑤𝑎𝑒 ≤ (𝑤𝑎𝑏
𝑟 + 𝑤𝑏𝑐

𝑟 + 𝑤𝑐𝑑
𝑟 ∙∙∙  + 𝑤𝑑𝑒

𝑟 )
1
𝑟  (4) 

where r is a parameter to balance the weight of neightbor 
distances and fixed at 1 for simplicity in this paper.  

Through the step (1) to (4), we now can generate the 
mobile application graph for the user u where a node is an 
application installed on the mobile phone and an edge is the 
connection between two application that are used during a 
certain session, Figure 3 illustrates an example of such a graph. 
The size of the node indicates that the frequency of use of the 
application while the thickness of the edge represents the 
distance between the two applications. The thickness of the 
edge represents the frequency of co-occurrence between the 
two applications. 

2) Fit Score: A method for Recommending an Application  
 Once the graph is created, we now can recommend an 
application for the user by calculating a fit score. Fit score 
represents the predicted score of an edge for new node when 
the node is newly connected to the graph. In other words, it 
means the probability score whether the application can be 

 
Figure 2. An illustration of generating edge based on triangle inequality 

 



connected to the graph. This score increases when the graph is 
similar to another graph where the new application already 
exists and the distance from the application to other 
applications is closer. The score also increases if the user who 
has a similar graph frequently uses the application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 To do so, we need to measure the similarity between the 
graphs via Minimum Common Subgraph (mcs) [18] measure. 
The similarity between two graph increases when they have 
plenty of common nodes and edges connecting to the nodes. 
The graph similarity, GS, between G′and G′′ can be measured 
as follows: 

GS(𝐺′, 𝐺′′) =
|mcs(𝐺′, 𝐺′′)|

max(|𝐺′|, |𝐺′′|)
 (5) 

where |mcs(G′, G′′)| indicates the number of common edges 
between G′ and G′′  and max(|G′|, |G′′|)  is the maximum 
number of nodes. 

Figure 4 illustrates an example of measuring the similarity 
of two graphs to represent user A and B, respectively. There 
are three common edges, denoted as |mcs(G′, G′′)|, and the 
maximum number of nodes, denoted as max(|G′|, |G′′|), is 8 
from the user B. Therefore, the similarity between the two 
graphs is 0.375. 

 

 

 

 

 

 

 

 

 

 

 
To predict the fit score of new application for the user u, 

AppTrends requires the user’s graph, Gu and other user’s graph, 
Gu

′. Chosen a random node n in Gu, it then finds a potentially 
undetected application for the user by detecting the neighbor 
nodes that are already connected to the chosen node n from 
Gu

′. By doing so, it becomes possible to calculate a probability 

of how much the user likes the discovered application n′ by 
multiplying the edge distance of the node and the similarity 
score between two graphs as follows:  

𝐹(𝐺𝑢 , 𝐺𝑢
′, 𝑛′) = 𝐺𝑆(𝐺𝑢 , 𝐺𝑢

′) ∗
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛, 𝑛′)
 (6) 

Based upon the above approach for calculating the fit score, 
AppTrends calculates the fit score for all the potential nodes 
that can be added to the nodes in the graph Gu. Then it returns 
those applications for the user u in a descending order of the fit 
score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Implementation for AppTrends 

To verify our proposed algorithm for AppTrends, we 
developed a prototype of AppTrends. It was developed as an 
Android application. The application largely contains four 
functions: Usage collector, Personalized application 
recommendation, App usage graph, and Friend app usage 
graph browsing. 

 Usage collector collects the installation and usage history 
of mobile applications for a user and sends it to the AppTrends 
server. Other functions interact with the user throughout the 
user interface shown in Figure 5. Personalized application 
recommendation function shows a list of applications that are 
recommended for the user. Each item in the list consists of icon, 
name, developer, description, fit score, and rating score of the 
application. App usage graph function visualizes a usage graph 
of the user from her usage data. On the other hand, Friend app 
usage graph function visualizes the user’s friends on Facebook. 
By choosing a friend’s name on the list, AppTrends shows the 
chosen friend’s usage graph. In addition, AppTrends supports 
another prototype function, called World App Trends Map, that 

 
Figure 3. An example of the application-based graph 

 
Figure 4. An example of measuring graph similarity 

 

 
Figure 5 UI for AppTrends 



shows a global mobile application graph by analyzing all the 
users’ usage history. As it exploits all the usage data, it enables 
a user to visualize the all trends of the mobile applications.  

IV. EXPERIMENTS 

In this chapter, we will first introduce our dataset, 
compared method and evaluation metrics that are used for our 
experiment. Then, we investigate the performance of our 
proposed algorithm by comparing it with the current state-of-
the-art mobile application recommender algorithm. We also 
introduce the graph integrating all users’ usage patterns that 
can be used for making a recommendation, especially for new 
users.  

A. Data Set 

To evaluate our algorithm, we collected the application 
usage data from users who installed AppTrends on their mobile. 
For a precise analysis, we only chose 206 users who have used 
AppTrends more than two weeks. These users made 4,201,041 
applications usage data and 713,745 sessions in total. Some 
applications such as launcher and screen lock application are 
removed from the dataset in order to decrease the noise effect. 
The usage data during the first week is used for training, and 
the other during the second week is used for testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 6 shows a proportion of users with respect to their 
number of records. Most of users used the applications on 
mobile from 1,000 to 5,000 while 18 users use the application 
more than 15,000, indicating that they are heavy mobile users. 
Furthermore, Figure 7 shows which category is more used by 
general smartphone users in application market. It seems that 
the applications categorized in Life Style, Tools, and 
Educations are much more used compared to applications in 
the other categories. Similarly, Figure 8 lists the most used 
mobile applications by the users, showing that Social Network 
Service applications such as KakaoTalk [19] and Facebook 
[20]. Note that the X axis in Figure 8 is a log scale, indicating 
that KakaoTalk is a dominant application among the 
applications available to users.  
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B. Compared Methods and Evaluation Metric 

To evaluate the performance of AppTrends, we compare it 
with one of the state-of-the-art recommender algorithms for the 
mobile application. Slope One predictors [21], takes into 
account information from other users who rated the same item 
and from the other items rated by the same user. The ratings 
from a specific user is represented as an array u  including 
training and testing set, where ui is the rating of this user gives 
to item i. The subset of the set of items consisting of all those 
items which are rated in u is denoted as S(u). Then the average 
deviation of item i with respect to item j is as follows:  

𝑑𝑒𝑣𝑗,𝑖 = ∑
𝑢𝑗 − 𝑢𝑖

|𝑆𝑗,𝑖(𝑅)|
𝑢∈𝑆𝑗,𝑖(𝑅)

 (7) 

where R is a training set within u , any two items i and j with 
ratings ui  and uj  respectively in some user evaluation u , 

 
Figure 6. The number of records for individual users 

 
Figure 7. The number of the applications per category 

 
Figure 8. Top 15 popular applications detected by AppTrends 



denoted as  u ∈ Sj,i(R), and |Sj,i(R)| is the number of elements 

in a set S. Given that devj,i, the predictor for the Slope One is 

defined as follows:  

𝑝𝑟𝑒𝑑(𝑢, 𝑗) =
∑ (𝑑𝑒𝑣𝑗,𝑖 + 𝑢𝑖)𝑖∈𝑅𝑒𝑙𝑒𝑒𝑣𝑎𝑛𝑡(𝑢,𝑗)

|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑢, 𝑗)|
 (8) 

where |Relevant(u, j)| is the number of all relevant items in 
S(R). 

 As Slope One algorithm outperforms other recommender 
algorithms for online rating-based collaborating filtering [21], 
except for variants of the Slope One, we compare AppTrends 
with the Slope One in order to evaluate the effectiveness of our 
model.   

 Furthermore, to evaluate our model, Precision @N is used. 
The number of k  recommended applications ( k ≤ N) , in  
descending order of prediction score, are evaluated by counting 
how many applications actually exist in the user’s testing 
dataset.  

C. Experiment Results  

Figure 9 shows the comparison between our model, 
AppTrends, and the compared model, Slope One, with 
different N (i.e., size of recommendation result set) on 
Precision @N measure for our dataset. From Figure 9, we can 
see that our model outperforms the compared model for all 
values of N, except for N = 10. The higher value of N is, the 
higher value of Precision AppTrends gets, indicating that our 
model can retrieve more relevant applications for the given 
user. In overall, 60% improvement is achieved by adapting 
AppTrends compared to Slope One.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Visualization  

Finally, we can visualize all users’ application usage data 
as a graph representing a usage pattern of the all mobile 
applications. The generated graph is useful, especially for new 
users who do not have enough mobile application usage data 
for analysis. In a conventional method, it requires a 
considerable effort and time to alleviate the cold start problem. 
On the other hand, compared with the conventional 
recommendation models, our graph-based approach is 
relatively faster to generate a list of recommended applications 

without a series of complex computing process for 
recommendation. Once the graph is created, the 
recommendation for new users can be done offline as the 
system can instantly choose neighbor applications of what the 
user installed on her mobile. This implies that our model can 
be more effective when the system is targeted for a commercial 
service in practice. Figure 10 shows the graph to visualize all 
users’ application usage patterns.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSION AND FUTURE WORKS 

The purpose of this paper is to develop a recommendation 
model specialized in the mobile applications on smart phones. 
To do so, we have introduced a novel method for representing 
a user’s usage pattern as a graph where nodes are applications 
installed by the user and edges are distances of how close two 
connected applications are. Based upon the graph, graph 
similarity and fit score are measured to predict the 
recommendation score for unseen applications to the given 
user. Throughout our experiment, we showed that our model, 
AppTrends, clearly outperforms the compared method. 
Furthermore, our graph-based approach creates a global 
mobile-application graph representing a global application 
usage pattern, which can be utilized for addressing data 
sparseness issues for new users.  

Taking a hybrid approach and combining the proposed 
recommendation model of AppTrends with other state-of-the-
art recommender models may further improve the 
recommendation performance. Recommender models are 
actively investigated in recent years and adaptation of the 
several state-of-the-art models has been proposed. Thus, an 
attempt to develop a hybrid system of AppTrends with other 
models is expected to improve the overall performance of 
recommendation results.  
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Figure 10. An illustration of mobile application graph for all users 

 
Figure 9. Precision scores with various N for Slope One and 

AppTrends 
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