
AppTrends: A Graph-based Mobile App

Recommendation System Using Usage History

Donghwan Bae, Keejun Han, Juneyoung Park, Mun. Y. Yi

Department of Knowledge Service Engineering

Korea Advanced Institute of Science and Technology

Daejeon, Republic of Korea

Email: {bdhwan, keejun.han, j.park89, munyi}@kaist.ac.kr

Abstract—With the advent of smartphones, mobile phones

have evolved from a simple communication tool to a multi-

purpose device that affects every aspect of our daily life. The

expansion of the mobile application market has made it difficult

for smartphone users to find applications that fit their needs.

Most prior research on application recommendation provides a

limited solution to the problem of application overload. These

recommendation techniques, developed outside of the mobile

environment, have a number of limitations such as cold start

problem and domain disparity. In this paper, we propose

AppTrends, which incorporates a graph-based technique for

application recommendation in the Android OS environment.

Our experiment results obtained from the field usage record of

over 4 million applications clearly show that the proposed graph-

based recommendation model is more accurate than the Slope

One Model.

Keywords— Mobile application recommendation; Pathfinder

network algorithm; Usage graph; Smartphone

I. INTRODUCTION

The rapid emergence of smartphones has inevitably formed
a new online market for mobile application. According to a
recent study, at least 10 billion people use smartphones in their
daily life for various purposes varying from a simple phone
call to delicate activities such as document editing [1]. Among
those various purposes, approximately 66% of the users mainly
use their smartphone to experience new mobile applications,
closely followed by Internet surfing [2]. This statistic tells us
that the mobile application plays a vital role in people’s daily
activities.

The mobile application can be easily installed from an
application market such as Apple’s App Store and Google’s
Android Market. The simple process of accessing the market
for both providers and downloaders have allowed the Android
market to grow and to register 0.7 million applications and is
continously increasing. [3].

Whether the user has installed an application, however, is a
vague indicator of whether the user actually likes the
application. In accordance with the recent survey [3], nearly 3
out of 10 applications are instantly deleted after installation.
This finding implies that finding the exact application one
requires can be a difficult process. This difficulty also poses
harm to the developers, as they lose the chance to promote
their applications to the users because of the enormous number
of applications that already exists in the market. Another

survey [4] presents that the top 50 applications reach almost 60%
of total download number; and the rest 0.69 million
applications are fighting for the rest 40%, indicating that most
of the applications fail to even be discovered by the users. The
nature of the market creates a definite need for a
recommendation technique specialized for mobile applications.

One of the most reliable recommendation technique for
mobile applications is based on Collaborative Filtering (CF)
method. Collaborative Filtering generates recommendations
primarily using users’ ratings. Although it is widely adapted
and promises a reliable performance, it suffers from cold start
problem, which is a critical issue when the user-generated data
is insufficient. Especially, in recommending mobile
applications, a cold start happens more frequently as the life
span of the mobile application is very short for sufficient
collection of rating data from the user [5].

To counteract the application overload problem, in this
paper we present AppTrends, a recommendation system for
mobile applications. The novel feature of AppTrends is that it
generates a graph from a user’s app usage history. In the
application-based graph, the nodes are the applications used by
the user and those nodes are connected if they are used
simultaneously in a certain session. The simultaneous use of
application implies that those two connected applications have
a high chance of being co-used to complete a sequential task.
For instance, Figure 1 shows the applications used to upload a
photo to a social network service. The process requires a
camera application to take the photo, which is then edited
through a photo editing application and shared via a social
network application. Although a different combination of
applications can be chosen to complete an identical task, it
sounds plausible to consider those applications are co-related

Figure 1 A sequential list of the applications for a

specific task (i.e., uploading a photo to SNS and finding

a restaurant nearby)

once they are used together. A newly-generated graph, using
the co-related applications, is then used to make a personalized
recommendation for mobile applications. Unlike the other
existing solutions, AppTrends is completely automatic and is
flexible to deal with the cold start problem. To the best of our
knowledge, AppTrends is the first mobile application that
generates a graph-based recommendation for mobile
applications.

 The major contributions of this paper are as follows:

 We propose a novel recommendation technique for
mobile applications, which is based on co-occurrence
of mobile applications activated in sequence. We then
compare our model with the CF method, a
fundamental model of a current state-of-the-art
commercial model, The results of our experiment
show that AppTrends outperforms the baseline model.

 We collect a real usage data from users for our
experiment in order to validate whether AppTrends
delivers a practically meaningful results for the
recommendation of the mobile application. To do so,
we have implemented the mobile prototype of
AppTrends and collected real usage data during two
weeks from 206 users.

The remainder of this paper is structured as follows: In
section II, we review the existing techniques used in mobile
application recommendation. In section III, we propose our
graph-based recommendation system, called AppTrends. In
section IV, we demonstrate the effectiveness of our system
through an experiment and present the results. In section V, we
conclude our paper.

II. BACKGROUND AND RELATED WORK

In this section, we discuss some of the conventional
recommendation techniques that are available for mobile
application and introduce some of the real mobile services that
are similar to our system.

A. Recommender Systems in E-commerce

A general strategy for item recommendation in E-
commerce is to discover potential items that are liked by
specific users. There are mainly four types of recommendation
strategies: Non-personalized, Attribute-based, Item-to-Item
Correlation, and People-to-People Correlation.

First, Non-personalized recommendation technique focuses
on discovering items that have relatively higher rating scores,
mainly targeting to satisfy most users. In other words, this
technique does not regard each user’s interest, but rather
recommends the same items that are sold most with high rating
scores to all users [5]. Second, Attribute-based
recommendation technique returns categorized items by
analyzing user’s specific attributes. Those attribute can be
collected manually from user input or automatically collected
from exploiting user’s usage data. A service based on this
technique is Movie Map [6], which recommends movies from
a category where a user is interested in. Third, Item-to-item
correlation is to recommend items that are not seen by a user,
but similar to items that the user has purchased. With the
purchasing history of the user, this technique can be built in an

automatic way. Amazon [7] is one of the most popular online
shopping services that adopts this technique for their item
recommendation. Lastly, People-to-People recommendation
measures how similar a user is to other users and recommends
items that are liked by the users who are similar to the user.
The commercial services based on this technique are Netflix [5]
and Musicstrands [9] that recommends songs with regards to
various features of the song such as genre, album, and singer.

B. Recommender Systems for Mobile Application

Recommender systems are not only used in the E-
commerce market environment, but also in the mobile
environment to recommend potentially favorable mobile
applications for smart phone users. Upon the analysis for
commercial mobile application recommender systems, we
classify them into following two categories: Social-aspect
recommender system and context aware recommender system.

Social-aspect recommender system is a technique that
discovers new items by sharing user information with others.
One of the mobile application recommender systems,
AppAware [10], records installation, update, deletion of mobile
applications and share those records with others, in order to
make a recommendation. This system is built upon the
assumption that word-of-mouth is the most effective way to
expand the influence of mobile application [11]. However, the
limitation of this system is that it suffers from the cold start
problem for new users as they have not created enough number
of user data to be analyzed for recommendation. Furthermore,
finding similar groups of users is not an easy task without
acquiring a large amount of rating scores for mobile
applications. Unlike other items in E-commerce, mobile
application market is still an emerging market, meaning that
most of mobile application misses the votes and ratings by
users. With those data missing, the recommendation would fail
to satisfy the user's needs. However, our system, AppTrends,
uses the user’s own application usage data, so it would
alleviate the problem caused from data sparseness .

On the other hand, context aware recommender systems
attempt to understand user’s current situation and reflect those
information into recommendation. The possible components of
the context can be time, location, activity, weather, emotional
status, and social status [12]. Understanding those contexts
enables the recommender systems to be more adaptable
depending on user contexts. For instance, a user currently on a
bus going for a train station is highly likely to be interested in a
mobile application that notifies her subway schedule. Appazzar
[13] recommends mobile applications by considering the user’s
current physical location. AppAware [14] is also a location-
based recommendation because it provides the information of
mobile application download done nearby to the user’s current
location. Inspired by AppAware, Applause [15] was further
developed to overcome the cold start problem by asking their
favorable places from newbies so as to recommend mobile
application downloaded within those places.

Although the above naive approaches of understanding
user’s context are promising, it is yet unsatisfactory to
understand what the user is currently doing. User’s current
activity can be instantly associated with the user’s current
interest, implying that those contextual information can be

exploited to improve the performance of the recommender
systems. Unlike the recommender systems above, our proposed
recommender system, AppTrends, employs a novel approach
that focuses on co-occurrence of mobile applications while
conducting a sequential task. By doing so, AppTrends is
expected to provide more adaptable recommendation results
for each user by capturing the user’s current interest (i.e.,
taking a photo, finding a route) from the co-occurrence
information.

III. OUR PROPOSED SYSTEM

In this section, we first introduce an automated method for
generating a mobile-application based graph from their co-
occurrence information, then moving on to explain how to
implement our system, AppTrends.

A. Algorithm for AppTrends

 The algorithm for AppTrends largely consists of two steps:
Mobile application-based graph creation and Fit-score
calculation. In the subsequent sections, we explain each step in
detail and how each step generates the final recommendation
result for mobile application.

1) Mobile Application-based Graph Creation:
The proposed approach that automatically generates mobile

application-based graph from a user’s application usage data
requires two specific information of the soruce: A set of
applications and co-occurrence scores of the applications.
These pieces of information are then processed with a number
of refining steps to remove weak connections for noise
deduction by calculating the shortest distance between the
applications.

As a first step, the mobile application list of a user are
created from the user’s mobile application usage history. To
caputre the applications, AppTrends records a list of the mobile
applications of the user. Once the user downloads an
application, the application is registered to AppTrends.

The co-occurrence between the applications are measured
during a session. A session begins when the user turns on the
mobile phone and terminates when the screen goes off. The
applications used within this session is considered to have a co-
occurrence relations. For instance, if a user wants to take a
photo and share it with her friend, the user turns on her mobile,
indicating that a new session begins. Then she takes a photo by
turning on the camera application. After editing the photo, she
sends the photo to her friends by using a messenger application.
Lastly, she turns off the application, at which the session ends.
Within this session, the user used camera, performed photo
editing and used messenger application, in sequence, to
complete a specific task.

As these applications are used to achieve the same purpose,
we can define that these applications are in a co-occurrence
relation. As such cases happen more frequently, the distance
between two applications in the graph becomes shorter. The
session co-occurrence, denoted as SC, between two application
Ai and Aj in the user u , can be formally defined as follows:

𝑆𝐶(𝐴𝑖, 𝐴𝑗) = ∑𝑛(

𝑛

𝑘=1

𝐴𝑖 ∩ 𝐴𝑗) (1)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐(𝐴𝑖 , 𝐴𝑗) =
𝑆𝐶(𝐴𝑖 , 𝐴𝑗)

max(𝑆𝐶)
 (2)

where n is the number of sessions, n(Ai ∩ Aj) is the number of

session co-occurrence of two application Ai and Aj, max(SC)
indicates the maximum SC between any applications for the
user u, for normalization. As two applications more often occur
in the same session, the distance between the applications need
to be closer, thus, defining the distance between Ai and Aj can

be obtained as follows:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴𝑖 , 𝐴𝑗) = 1 −𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠𝑐(𝐴𝑖 , 𝐴𝑗) (3)

Lastly, to reduce the noise between applications, we used
Pathfinder network pruning [16] that calculates the minimum
distance between nodes. The underlying priciple for calculating
minimum distance between two nodes Na and Ne is Triangle
Inequality [17]. Figure 2 shows the example of calculting the
minimun distance between Na and Ne.

In this case, the edge 𝑤𝑎𝑒 connecting 𝑁𝑎 and 𝑁𝑒 is only

drawn as follows:

𝑤𝑎𝑒 ≤ (𝑤𝑎𝑏
𝑟 + 𝑤𝑏𝑐

𝑟 + 𝑤𝑐𝑑
𝑟 ∙∙∙ + 𝑤𝑑𝑒

𝑟)
1
𝑟 (4)

where r is a parameter to balance the weight of neightbor
distances and fixed at 1 for simplicity in this paper.

Through the step (1) to (4), we now can generate the
mobile application graph for the user u where a node is an
application installed on the mobile phone and an edge is the
connection between two application that are used during a
certain session, Figure 3 illustrates an example of such a graph.
The size of the node indicates that the frequency of use of the
application while the thickness of the edge represents the
distance between the two applications. The thickness of the
edge represents the frequency of co-occurrence between the
two applications.

2) Fit Score: A method for Recommending an Application
 Once the graph is created, we now can recommend an
application for the user by calculating a fit score. Fit score
represents the predicted score of an edge for new node when
the node is newly connected to the graph. In other words, it
means the probability score whether the application can be

Figure 2. An illustration of generating edge based on triangle inequality

connected to the graph. This score increases when the graph is
similar to another graph where the new application already
exists and the distance from the application to other
applications is closer. The score also increases if the user who
has a similar graph frequently uses the application.

 To do so, we need to measure the similarity between the
graphs via Minimum Common Subgraph (mcs) [18] measure.
The similarity between two graph increases when they have
plenty of common nodes and edges connecting to the nodes.
The graph similarity, GS, between G′and G′′ can be measured
as follows:

GS(𝐺′, 𝐺′′) =
|mcs(𝐺′, 𝐺′′)|

max(|𝐺′|, |𝐺′′|)
 (5)

where |mcs(G′, G′′)| indicates the number of common edges
between G′ and G′′ and max(|G′|, |G′′|) is the maximum
number of nodes.

Figure 4 illustrates an example of measuring the similarity
of two graphs to represent user A and B, respectively. There
are three common edges, denoted as |mcs(G′, G′′)|, and the
maximum number of nodes, denoted as max(|G′|, |G′′|), is 8
from the user B. Therefore, the similarity between the two
graphs is 0.375.

To predict the fit score of new application for the user u,

AppTrends requires the user’s graph, Gu and other user’s graph,
Gu

′. Chosen a random node n in Gu, it then finds a potentially
undetected application for the user by detecting the neighbor
nodes that are already connected to the chosen node n from
Gu

′. By doing so, it becomes possible to calculate a probability

of how much the user likes the discovered application n′ by
multiplying the edge distance of the node and the similarity
score between two graphs as follows:

𝐹(𝐺𝑢 , 𝐺𝑢
′, 𝑛′) = 𝐺𝑆(𝐺𝑢 , 𝐺𝑢

′) ∗
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛, 𝑛′)
 (6)

Based upon the above approach for calculating the fit score,
AppTrends calculates the fit score for all the potential nodes
that can be added to the nodes in the graph Gu. Then it returns
those applications for the user u in a descending order of the fit
score.

B. Implementation for AppTrends

To verify our proposed algorithm for AppTrends, we
developed a prototype of AppTrends. It was developed as an
Android application. The application largely contains four
functions: Usage collector, Personalized application
recommendation, App usage graph, and Friend app usage
graph browsing.

 Usage collector collects the installation and usage history
of mobile applications for a user and sends it to the AppTrends
server. Other functions interact with the user throughout the
user interface shown in Figure 5. Personalized application
recommendation function shows a list of applications that are
recommended for the user. Each item in the list consists of icon,
name, developer, description, fit score, and rating score of the
application. App usage graph function visualizes a usage graph
of the user from her usage data. On the other hand, Friend app
usage graph function visualizes the user’s friends on Facebook.
By choosing a friend’s name on the list, AppTrends shows the
chosen friend’s usage graph. In addition, AppTrends supports
another prototype function, called World App Trends Map, that

Figure 3. An example of the application-based graph

Figure 4. An example of measuring graph similarity

Figure 5 UI for AppTrends

shows a global mobile application graph by analyzing all the
users’ usage history. As it exploits all the usage data, it enables
a user to visualize the all trends of the mobile applications.

IV. EXPERIMENTS

In this chapter, we will first introduce our dataset,
compared method and evaluation metrics that are used for our
experiment. Then, we investigate the performance of our
proposed algorithm by comparing it with the current state-of-
the-art mobile application recommender algorithm. We also
introduce the graph integrating all users’ usage patterns that
can be used for making a recommendation, especially for new
users.

A. Data Set

To evaluate our algorithm, we collected the application
usage data from users who installed AppTrends on their mobile.
For a precise analysis, we only chose 206 users who have used
AppTrends more than two weeks. These users made 4,201,041
applications usage data and 713,745 sessions in total. Some
applications such as launcher and screen lock application are
removed from the dataset in order to decrease the noise effect.
The usage data during the first week is used for training, and
the other during the second week is used for testing.

Figure 6 shows a proportion of users with respect to their
number of records. Most of users used the applications on
mobile from 1,000 to 5,000 while 18 users use the application
more than 15,000, indicating that they are heavy mobile users.
Furthermore, Figure 7 shows which category is more used by
general smartphone users in application market. It seems that
the applications categorized in Life Style, Tools, and
Educations are much more used compared to applications in
the other categories. Similarly, Figure 8 lists the most used
mobile applications by the users, showing that Social Network
Service applications such as KakaoTalk [19] and Facebook
[20]. Note that the X axis in Figure 8 is a log scale, indicating
that KakaoTalk is a dominant application among the
applications available to users.

\

B. Compared Methods and Evaluation Metric

To evaluate the performance of AppTrends, we compare it
with one of the state-of-the-art recommender algorithms for the
mobile application. Slope One predictors [21], takes into
account information from other users who rated the same item
and from the other items rated by the same user. The ratings
from a specific user is represented as an array u including
training and testing set, where ui is the rating of this user gives
to item i. The subset of the set of items consisting of all those
items which are rated in u is denoted as S(u). Then the average
deviation of item i with respect to item j is as follows:

𝑑𝑒𝑣𝑗,𝑖 = ∑
𝑢𝑗 − 𝑢𝑖

|𝑆𝑗,𝑖(𝑅)|
𝑢∈𝑆𝑗,𝑖(𝑅)

 (7)

where R is a training set within u , any two items i and j with
ratings ui and uj respectively in some user evaluation u ,

Figure 6. The number of records for individual users

Figure 7. The number of the applications per category

Figure 8. Top 15 popular applications detected by AppTrends

denoted as u ∈ Sj,i(R), and |Sj,i(R)| is the number of elements

in a set S. Given that devj,i, the predictor for the Slope One is

defined as follows:

𝑝𝑟𝑒𝑑(𝑢, 𝑗) =
∑ (𝑑𝑒𝑣𝑗,𝑖 + 𝑢𝑖)𝑖∈𝑅𝑒𝑙𝑒𝑒𝑣𝑎𝑛𝑡(𝑢,𝑗)

|𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑢, 𝑗)|
 (8)

where |Relevant(u, j)| is the number of all relevant items in
S(R).

 As Slope One algorithm outperforms other recommender
algorithms for online rating-based collaborating filtering [21],
except for variants of the Slope One, we compare AppTrends
with the Slope One in order to evaluate the effectiveness of our
model.

 Furthermore, to evaluate our model, Precision @N is used.
The number of k recommended applications (k ≤ N) , in
descending order of prediction score, are evaluated by counting
how many applications actually exist in the user’s testing
dataset.

C. Experiment Results

Figure 9 shows the comparison between our model,
AppTrends, and the compared model, Slope One, with
different N (i.e., size of recommendation result set) on
Precision @N measure for our dataset. From Figure 9, we can
see that our model outperforms the compared model for all
values of N, except for N = 10. The higher value of N is, the
higher value of Precision AppTrends gets, indicating that our
model can retrieve more relevant applications for the given
user. In overall, 60% improvement is achieved by adapting
AppTrends compared to Slope One.

D. Visualization

Finally, we can visualize all users’ application usage data
as a graph representing a usage pattern of the all mobile
applications. The generated graph is useful, especially for new
users who do not have enough mobile application usage data
for analysis. In a conventional method, it requires a
considerable effort and time to alleviate the cold start problem.
On the other hand, compared with the conventional
recommendation models, our graph-based approach is
relatively faster to generate a list of recommended applications

without a series of complex computing process for
recommendation. Once the graph is created, the
recommendation for new users can be done offline as the
system can instantly choose neighbor applications of what the
user installed on her mobile. This implies that our model can
be more effective when the system is targeted for a commercial
service in practice. Figure 10 shows the graph to visualize all
users’ application usage patterns.

V. CONCLUSION AND FUTURE WORKS

The purpose of this paper is to develop a recommendation
model specialized in the mobile applications on smart phones.
To do so, we have introduced a novel method for representing
a user’s usage pattern as a graph where nodes are applications
installed by the user and edges are distances of how close two
connected applications are. Based upon the graph, graph
similarity and fit score are measured to predict the
recommendation score for unseen applications to the given
user. Throughout our experiment, we showed that our model,
AppTrends, clearly outperforms the compared method.
Furthermore, our graph-based approach creates a global
mobile-application graph representing a global application
usage pattern, which can be utilized for addressing data
sparseness issues for new users.

Taking a hybrid approach and combining the proposed
recommendation model of AppTrends with other state-of-the-
art recommender models may further improve the
recommendation performance. Recommender models are
actively investigated in recent years and adaptation of the
several state-of-the-art models has been proposed. Thus, an
attempt to develop a hybrid system of AppTrends with other
models is expected to improve the overall performance of
recommendation results.

ACKNOWLEDGEMENT

We thank the editor and anonymous reviewers for their
helpful feedback on the earlier versions of this paper. This
work was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF-
2011-0024560).

Figure 10. An illustration of mobile application graph for all users

Figure 9. Precision scores with various N for Slope One and

AppTrends

REFERENCES

[1] http://www.businesswire.com/news/home/20121017005479/en/Strategy-
Analytics-Worldwide-Smartphone-Population-Tops-1/.

[2] http://isis.kisa.or.kr/board/?pageId=060200&bbsId=3&itemId=799/.

[3] http://www.appbrain.com/stats/number-of-android-apps/.

[4] http://appsfire.com/infographics/apps_vs_webapps_150dpi.png/.

[5] J. Bennett and S. Lanning, “The Netflix Prize,” 2007.

[6] Reel Cinemas, http://www.reelcinemas.ae/Movies/.

[7] Amazon, http://www.amazon.com/.

[8] J. B. Schafer, J. Konstan, and J. Riedl, “Recommender systems in E-
commerce,” pp. 158-166, 1999.

[9] G. Holmberg, “Musicstrands TM: A platform for discovering and
exploring music, 2005.

[10] A. Girardello and F. Michahelles, “Bootstrapping your mobile
application on a social market,” In Proc. of UbiComp, 2010.

[11] Z. Ahmet, and K. V. Mattila, “Mobile service distribution from the end-
user perspective – The survey study on recommendation practices,” In
Proc. of CHI Extanded Abstract, pp. 573-588, 2012.

[12] A. K. Dey, G. D. Abowd, and D. Salber, “A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware

applications,” Journal of Human-Computer Interaction, 16(2): 97-166,
2001.

[13] M. Bohmer, G. Bauer, and A. Krugger, “Exploring the design space of
recommender systems that suggest mobile apps,” In Proc. of workshop
CARS, 2010.

[14] A. Girardello, F. Michahelles, “AppAware: which mobile applications
are hot?,” In Proc. of MobileHCI, pp. 431-434, 2010.

[15] C. Davidsson, and S. Moritz, “Utilzing implicit feedback and context to
recommend mobile applications from first use,” In Proc. of workshop
CaRR, pp. 19-22, 2011.

[16] S. Hauguel, C. Zhai, and J. Han, “Parrel pathfinder algorithms for
mining structures from graphs,” In Proc. of ICDM, pp. 812-817, 2009.

[17] A. Tversky, and I. Gati, “Similarity, separability, and the triangle
inequality,” Psychological Review, 89:123-154, 1982.

[18] H. Bunke, X. Jiang, and A. Kandel, “On the minimum common
supergraph of two graph,” Computing, 65(1):13-25, 2000.

[19] Kakaotalk, http://www.kakao.com/talk/.

[20] Facebook, http://www.facebook.com/.

[21] D. Lemire, and A. Maclachlan, “Slope one predictors for online rating-
based collborative filtering,” In Proc. of SDM, pp. 471-475, 2005.

http://www.businesswire.com/news/home/20121017005479/en/Strategy-Analytics-Worldwide-Smartphone-Population-Tops-1
http://www.businesswire.com/news/home/20121017005479/en/Strategy-Analytics-Worldwide-Smartphone-Population-Tops-1
http://isis.kisa.or.kr/board/?pageId=060200&bbsId=3&itemId=799
http://www.appbrain.com/stats/number-of-android-apps
http://appsfire.com/infographics/apps_vs_webapps_150dpi.png
http://www.reelcinemas.ae/Movies
http://www.kakao.com/talk/
http://www.facebook.com/

